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Abstract—Accurate motion forecasting is crucial for safe
autonomous driving (AD). This study proposes CoT-Drive, a
novel approach that enhances motion forecasting by leveraging
large language models (LLMs) and a chain-of-thought (CoT)
prompting method. We introduce a teacher-student knowledge
distillation strategy to effectively transfer LLMs’ advanced
scene understanding capabilities to lightweight language models
(LMs), ensuring that CoT-Drive operates in real-time on edge
devices while maintaining comprehensive scene understanding
and generalization capabilities. By leveraging CoT prompting
techniques for LLMs without additional training, CoT-Drive
generates semantic annotations that significantly improve the
understanding of complex traffic environments, thereby boost-
ing the accuracy and robustness of predictions. Additionally,
we present two new scene description datasets, Highway-Text
and Urban-Text, designed for fine-tuning lightweight LMs to
generate context-specific semantic annotations. Comprehensive
evaluations of five real-world datasets demonstrate that CoT-
Drive outperforms existing models, highlighting its effectiveness
and efficiency in handling complex traffic scenarios. Overall, this
study is the first to consider the practical application of LLMs in
this field. It pioneers the training and use of a lightweight LLM
surrogate for motion forecasting, setting a new benchmark and
showcasing the potential of integrating LLMs into AD systems.

Index Terms—Autonomous Driving, Motion Forecasting, Large
Language Models, Chain-of-Thought Prompting

I. INTRODUCTION

Accurate motion forecasting of traffic agents in dynamic and
heterogeneous environments is fundamental for autonomous
vehicles’ (AVs) decision-making and safe planning, serv-
ing as a cornerstone for autonomous driving (AD) systems.
[1], [2] These environments necessitate motion forecasting
models that can effectively comprehend contextual semantic
information, including the movements and behaviors of var-
ious agents—such as vehicles, pedestrians, and cyclists—as
well as environmental factors such as traffic signals and

T Corresponding author; * Authors contributed equally.

Haicheng Liao, Hanlin Kong, Bonan Wang, Chengyue Wang, Chengzhong
Xu, and Zhenning Li are with the State Key Laboratory of Internet of
Things for Smart City, University of Macau, Macau. Ye Wang is with the
Department of Computer and Information Science, University of Macau,
Macau. Zhengbing He is with Senseable City Lab, Massachusetts Institute of
Technology, Cambridge MA, United States. E-mails: zhenningli @um.edu.mo.

This research is supported by the State Key Lab of Intelligent Transportation
System under Project (2024-B001), Science and Technology Development
Fund of Macau SAR (File no. 0021/2022/ITP, 0081/2022/A2, 001/2024/SKL),
Shenzhen-Hong Kong-Macau Science and Technology Program Category C
(SGDX20230821095159012), and University of Macau (SRG2023-00037-
I0TSC).

)
12
m
o
o
[
[l
=
_
o
O

B Llama3-8B + Edge LM (b)
Kno;/\edgz >&

3 Slow Response

© Good Security

® Relatively Adaptiveness

@, Limited Scene Understanding
Output: 1. Cars moving at 240° will keep
moving in the same direction. 2. Bikes will
continue to move close to each other. 3. The
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moving in their current direction. 4. The trucks
will continue moving together.
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Output: 1. Cars moving at 240° will likely
continue on their current paths. 2. Bikes will
remain close together and maintain their
current velocities and headings. 3. The
pedestrian and car moving westward will
continue on their paths. 4. The trucks will
maintain their current pattern and speed.

Output: 1. Cars at 240° will likely continue on
their current paths, lowering interaction risk. 2.
Bikes will maintain close proximity, overtaking
a slower car, which should avoid accelerating.
3. The pedestrian and car at 278° will likely
continue in parallel without intersecting. 4. The
truck convoy will remain stable, with a risk of
path crossings with 278° car and pedestrian.
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Fig. 1: Illustration of the strength of COT-Drive (d), comparing
edge LMs (a), local LLMs with edge LMs (b), and online
LLMs with edge LMs (c) on key perspectives: response time,
security, adaptability, and scene understanding capabilities.

road conditions, along with the intricate interactions among
these entities. Despite recent leaps forward in deep learning
models for motion forecasting [3], [4], they often falter in
unseen or corner-case scenarios, revealing critical limitations
in generalizability and contextual understanding. These data-
driven models typically focus on more common and simplistic
scenarios and tend to perform poorly when faced with real-
world environments that differ significantly from their training
data. This raises an urgent question: how can we enhance the
adaptability and robustness of these models?

The rapid developments in large language models (LLMs)
like GPT-4 [5] and Llama-2 [6] have offered a new perspec-
tive for understanding complex traffic scenarios and sparked
interest in their application for motion forecasting tasks [7].
Recent studies [8], [9] have demonstrated that LLMs not only
improve the performance of motion forecasting models in
common traffic scenarios but also excel in complex situations
that require a deep understanding of contextual subtleties and
intricate interactions between traffic agents. These powerful



generalization and reasoning capabilities position LLMs as a
promising solution to the challenges faced in this field [7].
However, deploying LLMs in AVs poses significant practical
obstacles. On the one hand, online LLMs like GPT-4 Turbo
and Palm [10] can provide comprehensive scene understanding
while alleviating computational burdens on edge devices. Yet,
these models are restricted by communication conditions,
which can hinder their effectiveness in real-time decision-
making, particularly in rural or underdeveloped areas with
unstable network connections or high latency. This can lead
to delayed responses that compromise passenger safety.

Moreover, passengers face substantial costs to access these
online services, such as API usage fees and subscription
charges for premium features, creating further barriers to their
widespread adoption in AVs. Importantly, they are vulnerable
to data leakage or malicious tampering during data transmis-
sion, which could seriously damage the safety and property
of passengers. On the other hand, while offline LLMs such as
Vicuna [11] and Flan-T5 [12] can effectively mitigate the risks
of data privacy and transmission delays, they typically struggle
to capture the dynamic and uncertain nature of complex
traffic scenarios as skillfully and flexibly as online LLMs. In
addition, the high storage and computational requirements for
locally deploying these models pose a significant challenge for
resource-constrained edge devices in real-world AVs.

These multifaceted challenges motivate us to explore critical
questions about the future of motion forecasting for AVs: How
can we develop a model that operates in real-time on edge
devices while maintaining comprehensive scene understanding
and generalization capabilities? To address these challenges,
this study presents CoT-Drive, a novel framework designed
to integrate the advanced scene understanding capabilities of
LLMs into a lightweight, edge-deployable model. Figure 1
illustrates our proposed approach, showcasing how the Chain-
of-Thought (CoT) prompting technique enhances contextual
semantic analysis while guiding language models (LMs) to
emulate LLMs in traffic scene comprehension. We introduce
a teacher-student knowledge distillation strategy to transfer
knowledge from powerful LLMs to lightweight LMs. Specif-
ically, the LLM GPT-4 Turbo acts as a “teacher”, imparting
its advanced scene understanding capacity to the lightweight
“student” model. This “student” model, i.e., LMs, integrated
into our motion forecasting framework, enhances scene inter-
pretation and generalization while minimizing computational
and storage overheads associated with the direct use of local
LLMs. To fully enhance the model’s scene understanding
capabilities, we refine the “teacher” model LLM using CoT
prompting techniques that align its insights with human-
like cognitive processes in driving contexts, thereby enabling
efficient and accurate predictions for AVs.

Overall, this study addresses several key research questions:

e Q1: How can CoT-Drive provide efficient and accurate
motion forecasting in challenging scenes, such as high-
ways, dense urban areas, and complex intersections?

e Q2: How can knowledge distillation effectively trans-
fer the advanced scene understanding ability of LLMs
to lightweight models, ensuring efficient, high-accuracy
predictions on computationally constrained edge devices?
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e Q3: Can CoT prompting be utilized to enhance the
contextual understanding of LLMs in complex scenar-
ios, thereby improving motion forecasting accuracy and
reliability without additional fine-tuning?

This paper embarks on an innovative journey to address
these research questions. We will explore and resolve these
research questions (A1-A3) throughout the study.The paper is
structured as follows: Section II reviews relevant literature,
while Section III introduces the proposed datasets. Section IV
formulates the problem and presents CoT-Drive. Section V
evaluates its performance in real-world datasets and examines
research questions. Section VI outlines limitations and future
research directions, and Section VII summarizes the findings.

II. RELATED WORK

Motion Forecasting in Autonomous Driving. Recent ad-
vancements in motion forecasting for AVs have leveraged deep
learning models to capture spatio-temporal interactions among
traffic agents. Early works, such as the CS-LSTM [13], empha-
sized the role of social interactions, marking a pivotal point in
motion forecasting. Subsequent contributions like MFTraj [14]
and NEST [15] refined trajectory accuracy through attention
mechanisms and goal-centered approaches. Further innova-
tions, such as GAN-based models for long-term prediction
[16], [17] and wave superposition techniques in WSiP [18],
have also improved prediction precision. It is well recognized
that the motion of traffic agents is strongly influenced by
surrounding agents, and several recent works have addressed
prediction accuracy by incorporating uncertainty in agent
behavior [19], [20]. Moreover, recent studies in Reinforcement
Learning (RL) and Evolutionary Learning (EL) [21] apply
techniques like Markov Decision Processes and evolutionary
algorithms for motion forecasting and optimal policy learning.
However, they often lack nuanced understanding and human-
like reasoning, limiting their real-world adaptability. To ad-
dress this, recent research has shifted from purely architectural
innovations to simulating real-world driving behaviors and
intentions. For instance, HLTP [22] and WAKE [23] introduce
cognitive strategy and wavelet transform theory to enhance the
understanding of driving behavior. Inspired by human drivers’
dynamic allocation of visual attention, HLTP++ [24] further
incorporates dynamic pooling mechanisms to mimic human
perception during the real-world driving process.

Large Language Models in Autonomous Driving. LLMs
have shown remarkable promise in the field of AD, facili-
tating complex traffic scene analysis, human-like reasoning,
and pragmatic decision-making [25]. Integrating LLMs into
AD marks a major advancement towards enhancing system
interpretability and adaptability. Early models like DiLu [9]
and CAVG [8] pioneer the use of LLMs to process vast driving
datasets, yet often struggled with generalizing across diverse
environments. Recent advancements, such as Traj-LLM [26],
have improved multimodal understanding and context-aware
reasoning. Notable methods extend this paradigm by integrat-
ing visual LLMs or using question-answer formats to mimic
human-like driving, while Co-Pilot [27] combines LLMs with
feature engineering for better decision-making. Building on
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[Task Description]: You will analyze the
traffic scenario using statistics, insights,

[Instruction]: Please analyze interactions
among traffic agents, think step by step.
[Knowledge&Examples]: Interactions in
traffic scenes are determined by the
promixity...
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scenarios arise from potential conflicts or ...
For example, a truck at (0, 0) accelerating
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For example, consider a scenario where a
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recognizing risks, and making
predictions.
[Requirement]: Think step by step. You
must follow 2 steps to provide your
analysis:
1. Reasoning 2. Conclusive answer.
Ensure your response is structured
logically.
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@ 7).
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[Answer]: 1. The truck convoy's movement
2. Bikes will maintain close proximity, ...
3. The pedestrian and car moving

Fig. 2: Illustration of the chain-of-thought prompting used in our proposed datasets to generate semantic annotations for a
given traffic scene. The dialogue progression is methodically structured under human-like cognitive processes that include
Background and Statistics, Interaction Analysis, Risk Assessment, and Prediction. Within each thematic category (step), we
systematically infuse the LLM with specific knowledge and illustrative examples.

these foundations, studies like W3AL [28] further refine
scene understanding and reasoning. However, these LLM-
based methods face challenges such as high computational
costs, sensitivity to hyperparameters, and deployment difficul-
ties in real-world autonomous driving. Online LLMs introduce
latency and privacy concerns, limiting real-time feasibility.
Overall, future work should balance model complexity and
efficiency to optimize prediction accuracy for AD.

CoT Prompting in Autonomous Driving. CoT prompting
[29] enhances the reasoning capabilities of LLMs by struc-
turing prompts to guide step-by-step problem-solving. This
technique encourages models to decompose complex tasks in-
crementally, mirroring human cognitive processes for clearer,
more logical decision-making. By ensuring a structured rea-
soning flow, CoT prompting improves planning, interpretabil-
ity, and overall performance in reasoning tasks. Notable stud-
ies involving CoT prompting with advanced LLMs, such as
GPT-4 and Vicuna-cot [11], demonstrate its effectiveness in
handling complex tasks. CoT prompting has demonstrated
its effectiveness in facilitating structured reasoning across
various domains, including autonomous driving [30]. However,
its application in AD motion forecasting remains largely
unexplored. By embedding a human-like reasoning process
through progressive question-answering, CoT prompting en-
ables LLMs to perceive and respond to intricate real-world sce-
narios more accurately. This structured reasoning enhances the
model’s ability to interpret environmental cues while reducing
hallucinations, ultimately improving scene comprehension and
the precision of motion forecastings for AVs.

III. PROPOSED DATASETS

This study contributes to the field of motion forecasting
by introducing two scene description datasets: Highway-Text
and Urban-Text. These datasets encompass over 10 million
words describing various traffic scenarios. The Highway-Text
dataset includes scene descriptions from 4,327 traffic scenarios
derived from the Next Generation Simulation (NGSIM) dataset
[13] and 2,279 scenarios from the Highway Drone Dataset
(HighD) [31]. Meanwhile, the Urban-Text dataset features
multi-agent scene descriptions from 3,255 samples in the
Macao Connected Autonomous Driving (MoCAD) dataset [3]
and 2,176 samples from ApolloScape [32], covering diverse
environments such as campus roads, urban roads, intersec-
tions, and roundabouts. Both datasets are divided into training
(70%), validation (10%), and testing (20%) sets.

To enhance LLMs’ comprehension of complex traffic scenes
and minimize hallucinations, we develop a CoT prompting
technique that uses sequential language instructions to guide
LLMs step-by-step in generating context-aware semantic an-
notations. As illustrated in Figure 2, CoT prompting unfolds as
a progressive dialogue, with each step directing GPT-4 Turbo
to focus on distinct facets of the scene. We outline the process
of this CoT prompting technique as follows:

Step-1: Background and Statistics. We design a unified
structured prompt for both highway and urban scenes. Each
data pair provides enriched information about traffic agents,
including agent types, positions, velocities, headings, and en-
vironmental elements. The prompt guides LLMs in identifying
key agents and generating a comprehensive overview of the
current traffic situation, such as road conditions, traffic density,
notable incidents, and potential behaviors of each agent.
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Fig. 3: Overall pipeline of CoT-Drive. Panel (a) illustrates the encoder-decoder architecture of CoT-Drive, comprising four
main modules: Language-Instructed Encoder, Interaction-aware Encoder, Cross-modal Encoder, and Decoder. Panels (b-1) and
(b-2) illustrate the workflows of the Language-Instructed Encoder and the training process for the edge LM. This training
involves multimodal fusion of semantic annotations and spatio-temporal data, where annotations are generated by a fine-tuned
LM. The edge LM is trained on real-world text data labeled through CoT prompting-enhanced GPT-4 Turbo, allowing it to
inherit the rich contextual learning capabilities of LLMs. Panel (c) illustrates the Decoder, which utilizes a deep ensemble
method to handle aleatoric and epistemic uncertainties, combining Gaussian Mixture Models for maneuver-based predictions.

Step-2: Interaction Analysis. This stage analyzes the
interactions between traffic agents by leveraging the context
from Step 1. The model assesses how agents such as vehicles,
pedestrians, and cyclists influence each other, identifying key
interactions likely to impact future maneuvers.

Step-3: Risk Assessment. Building on the background and
interaction information, this stage guides LLMs to evaluate
potential accident risks. LLMs review previous findings to
assess collision likelihood using factors like vehicle distri-
bution, speed, road conditions, and pedestrian behavior. This
assessment integrates risk models to calculate urgency scores
based on agent type, number, and proximity, quantifying
immediate risks to prioritize decision-making.

Step-4: Prediction. In the final stage, the LLMs are
instructed to predict the target vehicle’s future maneuvers,
such as acceleration, deceleration, or lane changes, and to
provide justification for these predictions. In addition, the
LLM generates future trajectory coordinates for the predicted
maneuvers and summarises the entire reasoning process.

Through iterative refinement, insights from all four steps are
synthesized into coherent semantic annotations in a standard-
ized format. All LLM-generated annotations undergo manual
validation and are cross-checked against traffic rules and legal
standards to ensure compliance with the European Union’s
General Data Protection Regulation (GDPR) [33]. Overall,
these datasets are the first to leverage GPT-4 Turbo’s linguistic

capabilities with CoT prompting for detailed semantic descrip-
tions of traffic scenarios. By introducing these datasets, we aim
to advance motion forecasting models, improve generalization,
and establish Highway-Text and Urban-Text as benchmarks for
complexity and realism in AD research.

IV. METHODOLOGY
A. Architecture Overview

The primary objective of this study is to predict the future
trajectory of the target agent within the perceptual range of
the AV. At the current time ¢, given the historical agent states
Xé;f’“t of the target agent (denoted with subscript 0) and
its surrounding traffic agents (subscripts from 1 to n) over
the time interval from ¢ — t; to ¢, the task is to predict
the future trajectory YOHMH"” of the target agent over a
specified prediction horizon t;. The historical agent states
Xé;f’“t consists of the 2D position coordinates, heading,
velocity, lane identifiers, and acceleration of the target agent
and its surrounding agents. The overall pipeline of CoT-
Drive is shown in Figure 3 (a), which is built upon the
encoder-decoder paradigm, including four key components: a
Language-Instructed Encoder, an Interaction-aware Encoder,
a Cross-modal Encoder, and a Decoder. In a nutshell, the
Language-Instructed Encoder generates semantic descriptions
of the traffic scenario, including interaction analysis, risk
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assessment, and movement predictions, to provide a com-
prehensive understanding. These descriptions are then ex-
tracted as multimodal features F,,,, while the Interaction-aware
Encoders concurrently extract localized spatial features .
Subsequently, the Cross-modal Encoder integrates and updates
the representation of these features F,,, and J,, to produce the
cross-modal features F.. Finally, the Decoder utilizes F. to
predict multimodal trajectories.

B. Language-Instructed Encoder

This encoder extracts rich semantic features from complex
traffic scenes, balancing accuracy and efficiency for practical
use. As shown in Figure 3, we introduce a “teacher-student”
knowledge distillation framework, using a pre-trained LLM,
GPT-4 Turbo, as the “teacher” to generate semantic responses
A for traffic scenarios based on CoT prompting. These seman-
tic answers A are then used as knowledge labels to instruct
a “student” model, a lightweight edge-optimized language
model (edge LM). Under the guidance of the “teacher” model,
the “student” model is fine-tuned to replicate the teacher’s
capability and behavior in scene understanding and generating
the semantic annotations S. The incorporation of multimodal
fusion in this encoder captures the interaction between se-
mantic annotations S and historical agent states Xéfth:t,
producing multimodal features F,,.

1) Teacher Model: To fully exploit the scene understanding
capabilities of large models, we propose a novel zero-shot CoT
prompting approach to guide GPT-4 Turbo in a progressive
interpretation of the traffic scenarios, ultimately producing
accurate answers (A) for the “student” model. As depicted
in Figure 2, we design a series of questions (Q) and prompts
(T) that interact with GPT-4 Turbo pgpr in a dialogic manner,
aiming to maximize the likelihood of generating accurate
answers (A). Mathematically,

|A|
p(AIT, Q) =[] papr(a: | T,Q ax) (1)
i=1

Here, a; and |.A| are the i-th token and the length of the final
answer, respectively. Then, the integration of CoT reasoning
further enhances the prompts (7) by embedding reasoning
steps (C). Formally,

p(AIT, Q) = p(AIT,Q,C) x p(C|T, Q) 2
Correspondingly, p(C|T, Q) and p(A|T, Q,C) are defined as:
IC|
p(CIT, Q) = [[ perr(cilT, Q <)
i=1
p(A|T,9,0) =[] perr(a; | T.2,C.ac;)
j=1

where ¢; is one step of total |C| reasoning steps. Our prompts
(7) are crafted to mirror human cognitive functions such as
interaction-risk assessment-prediction, steering GPT-4 Turbo
through a series of questions (Q) that foster initial reasoning
and lead to definitive answers. Moreover, each query integrates
commonsense knowledge and specific examples, enabling the

model to progressively refine its responses autonomously.
These step-by-step CoT prompts bolster GPT’s ability to
learn context and infer meanings in traffic scenarios without
additional fine-tuning, thus producing precise and informative
semantic answers A for the “student” model.

2) Student Model: To reduce the computational burden
during inference, we employ a lightweight edge LM as the
“student” model to learn scene understanding capabilities from
the “teacher” model pgpr enhanced by CoT prompting. The
“student” model takes the historical agent states X """ as
inputs to produce the semantic annotations S. Specifically, the
knowledge distillation process involves the use of informative
scene answers A to supervise the training of the student
model to accurately understand the traffic scene described by
X é;f’“t. Formally, the learning process of the “student” model
can be defined as follows:

s +—b0s—n- Vsﬁ(S,A) 4)

where 6 is the parameter of the student model, n denotes
the learning rate and Vs£(S,.A) represents the gradient of
the error £(S,.A) between S and A. This learning process
fundamentally involves the student model progressively ap-
proximating the teacher model, represented by a progressive
alignment between S and A. In particular, we experiment
with various student models, including GPT-Neo, Qwen 1.5
[34], TinyLlama [35], and Phi 1.5 [36], to investigate the
impact of the parameter size on the effectiveness of knowledge
distillation. Further details are provided in Section V-E.

3) Multimodal Fusion: The multimodal fusion is responsi-
ble for accepting semantic annotations & and the embedded
historical the target agent states Xé_t’“t and fusing them. Ini-
tially, the semantic annotations S undergo processing through
the DistilBERT framework [37], coupled with max pooling,
to extract semantic features F In parallel, the historical agent
states X" are fed into a Linear-ELU-LSTM network
structure to generate the temporal feature F;. Finally, a Mul-
tilayer Perceptron (MLP) is used to fuse the feature of two
modalities, thereby generating the multimodal features F,,.

C. Interaction-aware Encoder

We employ a transformer-based structure in the encoder
to capture spatial interactions between the target agent and
surrounding agents. At any given time step tj € [t — tp, 1],
the history states X(*, are fed into this module, which is first
processed through an MLP for dimensional transformation.
Then, the multi-head attention mechanisms and normalization
functions are utilized to model the spatial dynamics of these
representations, with shared weights across all time frames.
Finally, these processed representations are passed through
another MLP to generate the spatial features F,.

D. Cross-modal Encoder

Following the incorporation of a set of encoders, an at-
tention mechanism is introduced prior to the decoder. This
mechanism is designed to capture the cross-modal interactions
of the encoded features, thereby enabling dynamic adjustment
of the weights attributed to these diverse information sources.



This allows the model to be tailored to meet the specific
requirements of the current context. Specifically, the semantic
Fs, multimodal F,,, and spatial F,, features are projected into
query Q, key K, value V' vectors, respectively:

Q:WQ-F€7 K:WKfma V:WVFP (5)

where Wg, Wi, Wy are learnable matrices. Furthermore, We
make matrix product on these vectors to weight the cross-
modal features as follows:
QK"
¢Softmax( )V
Vdy
Moreover, ¢sofimar represents the Softmax activation function,
while dj, is the projection channel dimension.

(6)

E. Decoder

The decoder employs a dual-strategy to handle Aleatoric
(AU) and Epistemic Uncertainty (EU) in traffic scenarios. It
uses a Gaussian Mixture Model (GMM) for maneuver-based
multimodal predictions, complemented by deep ensemble
techniques for better adaptability to rare scenes. Maneuvers are
categorized into lateral (left, right, straight) and longitudinal
(accelerating, decelerating, maintaining speed) movements to
model AU. Based on observed agent states X/ """, the
maneuver probability P(M| X ") is estimated, with GMM
predicting future trajectories accordingly. Mathematically,

P(}/b+1 t+tf|Xt th: t)
_ZP t+1t+tf|X8 thit M)P (M|Xt th: t) @)

where A = [Aiy1, Adeyo, -, Arye,] is the Bivariate Gaus-
sian parameters for the target agent’s future trajectory. Each
)\tjc = {,Ut;c,x,,utgc,y,Ut;,zaat;,y,Pt;} for t" € [t + 1at+tf]
includes the mean, variance, and correlation coefficient for the
x- and y-positions, reflecting the uncertainty in the predicted
trajectory. Furthermore, the deep ensemble method is utilized
to model the EU. We employ () heterogeneous models for
maneuver prediction, each generating different probability
distributions of maneuvers M, represented as P,(M) for
q € [1,Q]. By aggregating these model outputs, we enhance
data robustness and quantify EU, as shown in Figure 3 (c).
We calculate the ensemble’s average prediction, P(M), and
measure average Cross-entropy H (M) to extract the frame-
wise pyramid feature maps for these heterogeneous models.

-y

q=1meM

m)log Fy(m) ®)

The ensemble includes diverse models like multi-layer
LSTMs, Temporal Convolutional Networks (TCNs), and
multi-head self-attention models, which collectively enhance
the prediction of multimodal future trajectories for the target
agent Yot:tﬂf . Meanwhile, F, is passed through an MLP to
modify the time dimension size, changing from the past time
ty to the future time ¢y, resulting in . Finally, the bivariate
Gaussian distribution parameters are derived using:

i’ = fdec(‘/_'.t; H?(M)”F(M)) ©)
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where || denotes the matrix concatenation, and fge. comprises
an LSTM and MLPs.

F. Training and Inference

1) Training: The training process for our model is divided
into two sequential stages: LMs fine-tuning and motion fore-
casting training. Edge LMs are fine-tuned in the first stage
using our proposed Highway-Text and Urban-Text datasets.
These datasets effectively encapsulate the knowledge distilled
from the teacher model (GPT-4 Turbo), facilitating the learning
of universal semantic scene information. This fine-tuning pro-
cess follows the standard training paradigm for autoregressive
language models. Considering that the scene-specific prompt
and the teacher model’s reference answer A are merged into
a complete sequence B during actual training. Formally,

| 5|

1
»Cstage-l |B| Zlogp b |b<l,9$) (10)

where b; denotes the i-th token in the merged sequence
B, |B| is the length of the sequence, b.; represents all
tokens preceding b;, and 05 represents the parameters of the
student model. This formulation of Lgyee.1 is the concrete
implementation of the general error £(S,.A) introduced in
Equation 4, specifically tailored for autoregressive language
models in the context of knowledge distillation. This process
facilitates semantic alignment at both vocabulary and semantic
levels, enabling the edge LMs to internalize the teacher’s
reasoning patterns and contextual understanding of scene-
specific information. After this stage, the edge LMs achieve
superior performance in scene understanding.

Furthermore, we utilize a multitask learning strategy for the
second stage 10ss Lguee2 that includes both track prediction
loss L,,j and maneuver loss L. for maneuver prediction,
which can be defined as follows:

Estage—Z = OK'L‘traj + (1 - (11)

« ) £mune

where « is a hyperparameter. The maneuver loss L, as-
sesses the accuracy of the predicted trajectories relative to
intended maneuvers:

Z ymlogp(mp(t it )
meM

£mane =

12)

where ¥, denotes the ground truth maneuver. Moreover, the
trajectory loss L,,j, according to bivariate Gaussian distribu-
tion, is defined as follows:

t+tg 1
L V)
fra = 2 {log (%%’I%’y ! ptk) a2
) =t+1 th,
2 2
(Mt;c,z - xt;) _ (thﬁ,z - zt;c)(l"’t;c,y - ytgc)l’tgc n (Mt;c,y - yt;c)

2 2

T e 91,29ty Ty

13)

Overall, the combined loss functions ensure that the predicted
trajectories are accurate and aligned with realistic driving
maneuvers, enhancing reliability in real-world conditions.
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) (b36) tr (bi)
Fig. 4: Validation loss curves for four LMs on the developed
datasets: (al)-(a4) show the loss curves for Phi-1.5, TinyL-

lama, Qwen-1.5, and GPT-Neo on Urban-Text; (b1)-(b4) show
their corresponding validation loss on Highway-Text dataset.

2) Inference: For the scene annotation task, historical agent
states are converted into text inputs for fine-tuned edge LMs,
which generate scene annotations using prompt engineering.
In the motion forecasting task, the model combines semantic
annotations with historical agent states to produce the multi-
modal future trajectory. During inference, only the knowledge-
distilled lightweight LM is responsible for generating scene
descriptions, thereby ensuring efficient predictions for AVs.

V. EXPERIMENTS
A. Experiment Setups

1) Datasets: We assess the scene understanding capabil-
ities of the lightweight LM using the proposed Highway-
Text and Urban-Text datasets. CoT-Drive’s motion forecasting
performance is evaluated on five real-world datasets: NGSIM,
HighD, MoCAD, ApolloScape, and nuScenes.

2) Data Segmentation: For the NGSIM, HighD, and Mo-
CAD datasets, trajectories are segmented into 8-second in-
tervals: the first 3 seconds (¢, = 3) are used as input, and
the following 5 seconds (ty = 5) serve as ground truth.
In ApolloScape, we follow its challenge guidelines, predict-
ing 3-second futures (t; = 3) based on 3-second histories
(tn, = 3) for agents like vehicles, pedestrians, and cyclists.
For nuScenes, we adhere to baseline methodologies, using a 2-
second history (t;, = 2) to predict a 4-second future (t; = 4).

3) Evaluation Metrics: The effectiveness of the LM is
assessed using BERT-Score [38], a popular metric in natural
language processing to evaluate how well the generated text
aligns with actual labels. This includes metrics like Precision
(P), Recall (R), and F1 Score (Fi), where values closer
to 1 indicate better alignment between the LM and LLM’s
generative capabilities, specifically:

|C| Z max cos (¢BERT(T), PBERT(Y)) (14)

R = |R| Zmaé(COS(¢BERT( ), ¢BERT()) (15)
PxR

F1=2%%7R (1o

where C represents the set of tokens in the semantic annotation
S generated by the student LM, R is the set of tokens in the

accurate reference answer A provided by GPT-4 Turbo, and
¢pert(+) denotes the BERT embeddings for each token.

For the NGSIM, HighD, and MoCAD datasets, Root Mean
Square Error (RMSE) is used as the evaluation metric. In
the ApolloScape dataset, predictive accuracy is assessed using
Average Displacement Error (ADE) and Final Displacement
Error (FDE), with specific computations for different entities:

WSADE = D,, - ADE, + D, - ADE, + D;, - ADE,,
WSFDE = D, - FDE, + D,, - FDE, + D;, - FDE,,

Here, D,, Dy, and Dy, are the weighting factors for vehicles,
pedestrians, and bicycles, respectively, set to 0.20, 0.58, and
0.22. For the nuScenes dataset, we evaluate the quality of pre-
dicted trajectories using the Minimum Average Displacement
Error over k (minADE}), Minimum Final Displacement Error
over k (minFDEy), and Miss Rate at 2 meters over k (MRy).

a7)

B. Implementation Details

CoT-Drive is trained on four NVIDIA A100 40GB GPUs.
Key implementation and parameter settings are as follows:

1) Details of Training of LMs: We fine-tune four LMs using
bfl6 precision and supervised fine-tuning (SFT). A learning
rate of 2¢7° is selected after preliminary experiments for
stability and generalization. The batch size is 8, balancing
efficiency and effective gradient updates. Training runs for 10
epochs with a weight decay of 0.01 to prevent overfitting.
Validation loss curves (Figure 4) show rapid convergence by
the 10th epoch, demonstrating efficient adaptation to data
distribution, reducing training costs, and facilitating faster
development for real-world applications.

2) Details of Prediction Framework: The motion forecast-
ing framework trains for 16 epochs with a batch size of 64,
selected for GPU memory efficiency and improved general-
ization. We use the Adam optimizer with Cosine Annealing
Warm Restarts, adjusting the learning rate from 10~3 to 10—
for rapid convergence and fine-tuning. The Interaction-aware
Encoder uses a hidden size of 64, with 8 attention heads
and 3 layers, selected to balance computational efficiency and
optimal validation results. The Decoder employs an ensemble
of Multi-scale LSTMs, TCNs, and multihead self-attention (4
heads) to enhance robustness and accuracy. The parameter «
in eq. 11 is set to 0.5 to balance the loss components.

C. Evaluations on Five Real-world Datasets

This study evaluates CoT-Drive against state-of-the-art
(SOTA) baselines using five real-world driving datasets, with
detailed results in Table I and Table II.

1) ApolloScape: The ApolloScape dataset presents the chal-
lenge of predicting the trajectories of multiple agents, includ-
ing vehicles, pedestrians, and cyclists, in an urban setting.
CoT-Drive is built for comprehensive scene-level predictions
rather than single-agent focus, enabling multi-agent motion
forecastings for an entire traffic scene in a single run. As
shown in Table I, CoT-Drive outperforms all top baselines,
specifically surpassing AI-TP in WSADE by 5.1% and MSTG
in WSFDE by 4.9%. These findings highlight its superior
ability to deliver accurate multi-agent predictions in complex
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TABLE I: Evaluation results for our model and other SOTA baselines in the ApolloScape dataset. ADE, /,/;, and FDE, /3,
are the ADE and FDE metrics for the vehicles, pedestrians, and bicycles, respectively. Bold and underlined values represent

the best and second-best performance in each category.

indicates the performance of our proposed model.

Method Publication Backbone WSADE | ADEv  ADEp ADEDb WSFDE FDEv FDEp FDEb
TrafficPredict [39] AAATI'19 LSTM 8.5881 7.9467  7.1811  12.8805 | 24.2262 | 12.7757 11.1210 22.7912
TPNet [40] CVPR’20 CNN 1.2800 2.2100  0.7400 1.8500 2.3400 3.8600 1.4100 3.4000
S2TNet [41] ACML21 Transformer 1.1679 1.9874  0.6834 1.7000 2.1798 3.5783 1.3048 3.2151
AI-TP [42] IEEE-TIV’22 GAT 1.1544 1.9878  0.6684 1.6780 2.1297 3.5246 1.2667 3.1370
TP-EGT [43] IEEE-TITS 24 Transformer 1.1900 2.0500  0.7000 1.7200 2.1400 3.5300 1.2800 3.1600
MSTG [44] IET-ITS’ 23 LSTM 1.1546 1.9850 0.6710 1.6745 2.1281 3.5842 1.2652 3.0792
CoT-Drive (Ours) - LLM + edge LM 1.0958 1.8933 0.6179  1.6305 2.0260 3.3541 1.1893 3.0244

TABLE 1II: Evaluation results for our proposed model and the other SOTA baselines in the NGSIM, HighD, and MoCAD
datasets. Note: RMSE (m) is the evaluation metric. Bold and underlined values represent the best and second-best performance.

Prediction Horizon (s)

Datasets Models Backbone 1 > 3 4 5 AVG
CS-LSTM [13] LSTM 0.61 1.27 2.09 3.10 4.37 2.29

NLS-LSTM [45] LSTM 0.56 1.22 2.02 3.03 4.30 223

MHA-LSTM [46] LSTM 0.41 1.01 1.74 2.67 3.83 1.93

WSIP [18] LSTM 0.56 1.23 2.05 3.08 4.34 2.25

CF-LSTM [47] LSTM 0.55 1.10 1.78 2.73 3.82 2.00

NGSIM TS-GAN [48] GAN 0.60 1.24 1.95 2.78 3.72 2.06
STDAN [4] Attention 0.42 1.01 1.69 2.56 3.67 1.87

BAT [3] LSTM 0.23 0.81 1.54 2.52 3.62 1.74

HTPF [49] LSTM 0.49 1.09 1.78 2.62 3.65 1.92

FHIF [50] LSTM 0.40 0.98 1.66 2.52 3.63 1.84

CoT-Drive (Ours) LLM + edge LM 0.40 0.92 1.43 2.04 2.87 1.53

CS-LSTM [13] LSTM 0.22 0.61 1.24 2.10 3.27 1.49

NLS-LSTM [45] LSTM 0.20 0.57 1.14 1.90 291 1.34

MHA-LSTM [46] LSTM 0.19 0.55 1.10 1.84 2.78 1.29

HighD HTPF [49] LSTM 0.16 0.47 0.94 1.58 2.36 1.10
STDAN [4] Attention 0.19 0.27 0.48 0.91 1.66 0.70

GaVa [51] GAT 0.17 0.24 0.42 0.86 131 0.60

CoT-Drive (Ours) LLM + edge LM 0.08 0.13 0.20 0.37 0.72 0.30

CS-LSTM [13] LSTM 1.45 1.98 2.94 3.56 4.49 2.88

MHA-LSTM [46] LSTM 1.25 1.48 2.57 322 4.20 2.54

NLS-LSTM [45] LSTM 0.96 1.27 2.08 2.86 3.93 222

MoCAD CF-LSTM [47] LSTM 0.72 0.91 1.73 2.59 3.44 1.88
WSIP [18] LSTM 0.70 0.87 1.70 2.56 3.47 1.86

STDAN [4] Attention 0.62 0.85 1.62 2.51 3.32 1.78

HLTP [24] Attention 0.55 0.76 1.44 2.39 3.21 1.67

CoT-Drive (Ours) LLM + edge LM 0.43 0.78 1.37 2.14 2.79 1.50

TABLE III: Performance comparison of models on the
nuScenes dataset. Models use either HD maps (Map) and
trajectory data (Traj.), or solely trajectory data (’-).

Method Input Backbone minADE5 (m) minFDE5 (m) MRj
Trajectron++ [52] Traj. + Map Attention 1.88 - 0.70
MHA-JAM [53] Traj. + Map LSTM 1.81 3.72 -
EMSIN [54] Traj. + Map CNN 1.77 3.56 0.54
AgentFormer [55] Traj. + Map  Transformer 1.86 3.89 -
Lapred [56] Traj. + Map LSTM 1.53 3.37 -
GOHOME [57]  Traj. + Map GCN 1.42 - 0.57
DLow-AF [58] Traj. GRU 2.11 4.70 -
LDS-AF [59] Traj. LSTM 2.06 4.62 -
GATraj [60] Traj. GCN 1.87 4.08 -
MLST [61] Traj. Transformer 1.70 3.67 0.65
AFormer-FLN [62] Traj. Transformer 1.83 3.87 -
CoT-Drive (Ours) Traj. LLM + edge LM 1.56 349 0.52

urban environments, underscoring the LM’s proficiency in
comprehending intricate traffic scenes.

2) NGSIM: The NGSIM dataset, featuring high-speed,
dense highway environments, emphasizes the need for accurate
prediction of vehicle intentions, such as lane changes and
merging. Notably, CoT-Drive achieves a 12.07% improvement
in average prediction accuracy and a 15.59% gain in long-
term (5s) accuracy over benchmark models ranging from 2018

to 2024, highlighting its strong performance in understanding
highway dynamics, in terms of long-term prediction (3s-5s).

3) HighD: Similar to NGSIM, the HighD dataset also in-
volves highway traffic, but with higher trajectory data accuracy
and larger sample sizes, leading to improved prediction per-
formance. CoT-Drive demonstrates a 28.7% increase in long-
term accuracy and a 23.08% average improvement, reinforcing
CoT-Drive’s leading performance in highway scenarios.

4) MoCAD: The MoCAD dataset contains a variety of
urban scenarios, including campus streets and intersections
with complex right-hand drive urban streets, which place high
demands on model generalization performance. CoT-Drive
consistently outperforms other models across all prediction
horizons, with an average improvement of 11.33%, underscor-
ing its robustness in handling diverse urban conditions.

5) nuScenes: The nuScenes dataset includes challenging
scenarios from Boston and Singapore and features high-
definition (HD) maps with detailed lane and road geometry.
CoT-Drive, as a map-free framework, achieves substantial
improvements over non-map-based models while eliminat-
ing the need for costly HD maps. Specifically, it improves
minADEs5;, minFDE5, and MRj by at least 8.34%, 5.16%,
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and 2.50%, respectively. This highlights CoT-Drive’s ability
to learn contextual features of complex scenes without relying
on HD maps, benefiting from CoT prompting to enhance scene
understanding and multi-agent interaction.

D. Comparison of Model Performance and Efficiency

To evaluate the efficiency of CoT-Drive, we evaluate its
inference speed across different configurations on the NGSIM
and nuScenes datasets. Table IV reports inference times for
CoT-Drive variants (Vicuna-13B, Llama2-7B, and Mistral-
7B), where each variant uses a different edge model. While
CoT-Drive (Vicuna-13B) achieves the highest accuracy, the
improvement is limited to 3.92%, accompanied by a 12.7-fold
increase in inference time, rendering it impractical for real-
time systems. These results underscore CoT-Drive’s ability
to strike an effective balance between accuracy and com-
putational efficiency, a critical factor for real-world AVs.
Furthermore, Table V compares CoT-Drive with the baselines
on the nuScenes dataset, evaluating predictions for 12 agents.
Under identical conditions, the Llama2-7B and Vicuna-13B
variants are 12 times and 20 times slower than the original
CoT-Drive, while providing only marginal accuracy gains. This
demonstrates that it maintains competitive inference times and
significantly improves prediction accuracy, making it suitable
for AD systems that require both high performance and infer-
ence efficiency. Overall, these findings validate our model’s
ability to provide efficient and accurate forecasts in complex
scenes, including highways, urban areas, and intersections,
thereby addressing our first research question (Al).

E. Ablation Studies

1) Effect of Knowledge Distillation Strategy (A2): This
study employs a teacher-student knowledge distillation frame-
work, where GPT-4 Turbo acts as the ‘“teacher” to train
lightweight LMs (the “students”), enabling them to effectively
understand and reason about complex driving scenarios. We
validated this approach by comparing lightweight LMs such as
GPT-Neo, Qwen 1.5, TinyLlama, and Phi 1.5, evaluated using
our Highway-Text and Urban-Text datasets under the guidance
of GPT-4 Turbo. As shown in Tables VI and VII, these models
demonstrated robust scene understanding in both urban and
highway contexts, reflected in high Precision, Recall, and F1
Scores, as well as competitive inference speeds, highlighting
the value of our knowledge distillation strategy. Further, Table
VIII presents the results of incorporating these distilled LMs
into the Language-Instructed Encoder, demonstrating perfor-
mance gains over top baselines, and indicating strong gener-
alization across diverse traffic environments. These findings
confirm that our knowledge distillation effectively transfers
advanced scene understanding from GPT-4 Turbo to smaller,
resource-efficient LMs, achieving accurate predictions and in-
ference speeds fit for edge deployment. These findings directly
address our second research question (Q2), confirming that the
knowledge distillation effectively retains the advanced scene
understanding of LLMs within smaller, resource-efficient LMs.
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Fig. 5: Comparison of four different LMs in Parameter Count
(a) and Performance on Urban-Text (b) and Highway-Text (c).
Note: F1 Score is the evaluation metric.

TABLE IV: Inference time comparison on NGSIM dataset for
10 batches of size 128, using Nvidia A40 GPUs.

Language Model AVG (m) Inference Time (s)
CoT-Drive 1.53 0.29
CoT-Drive (Vicuna-13B) 1.47 2.58
CoT-Drive (Llama2-7B) 1.51 1.92
CoT-Drive (Mistral-7B) 1.50 1.66

2) Comparative Analysis of LMs: Figure 5 visually demon-
strates that the relationship between the parameter size of
LMs and their performance is not straightforwardly linear. To
balance performance and computational burden, we conduct
comparative experiments on GPT-Neo, Qwen 1.5, TinyLlama,
and Phi 1.5, evaluating both their inference speeds and scene
understanding capabilities. The quantitative results of the
scene understanding capabilities for the LMs are detailed
in Table VI. We observe that, with the exception of GPT-
Neo, the other three models demonstrate superior performance.
Specifically, increasing parameters from 0.13B to 0.62B yields
substantial performance improvements (F1 scores rise from
0.87 and 0.89 to 0.94 and 0.97, respectively). However,
further expansion from 0.62B to 1.5B produces only marginal
benefits (F1 score increases of merely 0.27% and 0.58%).
This indicates that despite a 2.4-fold increase in parameters,
the performance improvement remains minimal. To assess the
impact on inference speed, we test each LM on 8 highway and
8 urban scenes, recording the time required to generate scene
descriptions for all 16 scenarios. Table VII provides a detailed
comparison of inference speeds, and Figure 6 visualizes the
semantic annotations produced by the LMs for an urban traffic
scene. Inference time exhibits an approximately linear relation-
ship with parameter count, ranging from 0.06 seconds for GPT-
Neo to 0.37 seconds for Phi-1.5. GPT-Neo, although fastest
(0.06 seconds), struggles to produce meaningful semantic
annotations, whereas the other three models accurately capture
complex urban dynamics, such as identifying turning and
deceleration patterns of the target vehicle. Among these three,
Qwen-1.5 requires the least inference time. Based on these
evaluations, Qwen-1.5 is selected as the scene understanding
component for the CoT-Drive model, offering an optimal
balance between performance and computational efficiency.

3) Importance of Each Component: To assess the impor-
tance and effectiveness of each component in CoT-Drive, we
conduct extensive ablation studies focusing on four key com-
ponents of CoT-Drive, as summarized in Table VIII. Model
A omits the knowledge distillation step in the Language-
Instructed Encoder, using LMs directly for scene descriptions



TABLE V: Inference time comparison on the nuScenes
dataset, evaluated for 12 agents using Nvidia A40 GPUs.

Language Model minADEs (m) minFDEs (m) MRs  Time (ms)
CoT-Drive 1.56 349 0.52 76
CoT-Drive (Vicuna-13B) 1.54 3.60 0.53 1547
CoT-Drive (Llama2-7B) 1.59 3.58 0.56 927
CoT-Drive (Mistral-7B) 1.57 3.54 0.55 836

TABLE VI: Performance evaluation for LMs on proposed
Highway-Text and Urban-Text datasets. The evaluation metrics
include Precision, Recall, and F1 Score (average across all
samples). Purple indicates the LM selected in CoT-Drive.

Highway-Text Urban-Text
Model . -
Precision Recall F1 Score Precision Recall F1 Score
Phi-1.5 [36] 0.9767 0.9766 0.9766  0.9433 0.9543 0.9483
TinyLlama [35] 0.9739 0.9751 0.9745 0.9408 0.9541 0.9474
Qwen-1.5 [34] 09736 0.9745 0.9739  0.9427 0.9426 0.9425
GPT-Neo [5] 0.8899 0.8931 0.8915 0.8684 0.8792 0.8738

instead. This results in a significant performance drop of up to
22.34%, highlighting the crucial role of knowledge distillation
in enabling LMs to inherit advanced scene understanding
capabilities from LLMs—especially in complex environments
involving multi-agent interactions, congested streets, and in-
tersections. These findings directly address our first research
question (Q1), underscoring that knowledge distillation is vital
for transferring sophisticated reasoning skills to lightweight
LMs while maintaining computational efficiency.

Model B omits the Interaction-aware Encoder, leading to
a 15.93% performance drop, emphasizing the need to cap-
ture both scene semantics and spatio-temporal interactions
for effective multi-agent context handling. Model C replaces
the cross-attention mechanism with an MLP, resulting in a
9.47% decrease, underscoring cross-attention’s role in accu-
rately focusing on key traffic agents and environmental cues.
Model D substitutes the proposed decoder with a simple
MLP, causing an 18.62% performance drop, likely due to its

TABLE VII: Inference time comparison for prediction with
the batch size of 16. #Param. is the number of parameters.

Language Model #Param. (B) Inference Time (s)
GPT-Neo 0.13 0.06
Qwen-1.5 0.62 0.17
TinyLlama 1.10 0.29

Phi-1.5 1.50 0.37

TABLE VIII: Evaluation of different ablated models, where
LI IA, CA, and UD denote the Language-Instructed Encoder,
Interaction-aware Encoder, Cross-modal Attention, and De-
coder, respectively. AVG denotes the average RMSE metric.

Components
Ablated Models LI A CA UD AVG
A X 4 v v 1.97 92 34%
B 4 X v 4 1.8215.93%
C v 4 X 4 1.699.47%
D v 4 v X 1.8818.62%
E v 4 v v 1.53
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Traffic Scene

Ground Truth

f, 1. Pedestrians to the northeast are crossing
" the street near the target vehicle, increasing

the risk of collision. They are expected to
continue along the sidewalk. 2. With most
surrounding vehicles stationary, the overall
risk is low. The target vehicle at (0, 0) should
stop completely before turning right,
ensuring pedestrians have fully crossed.

Q) 1.A group of pedestrians to the northeast is
crossing the road near the target vehicle,
posing a significant collision risk. They are
expected to continue along the sidewalk.

2. Most surrounding vehicles are stationary,
presenting low risk. The target vehicle at (0, 0)
should stop before turning right, waiting for
the pedestrians to fully cross to ensure safety.

1. Pedestrians from the northeast are
crossing the road near the target vehicle,
posing a high collision risk. They may stop
and wait for the target vehicle to pass. 2.
Vehicles to the southeast may start moving
unexpectedly, posing a collision risk. The
target vehicle at (0, 0)is expected to pass
pedestrians to cross. through the pedestrian crossing safely.

GPT-Neo Drnits

Fig. 6: Comparison of semantic annotation output by four
different LMs for a specific traffic scene in the nuScenes
dataset. In the “Traffic Scene” subfigure, the target agent is
marked in red, while the ground truth trajectory in the “Ground
Truth” subfigure is depicted in green.

g;‘, 1. Pedestrians from the northeast are @
crossing the road near the target vehicle,
increasing collision risk. They are expected to
continue along the sidewalk.2. With most
nearby vehicles stationary, the risk remains
minimal. The target vehicle at (0, 0) should
stop fully before turning right, allowing

XQV; Qwen 1.5 fi TinyLlama

inability to handle traffic uncertainties. The original decoder
uses maneuver-based multi-modal prediction to manage unpre-
dictability, highlighting the need for explicitly modeling scene
uncertainty to ensure reliability.

4) Ablation Studies on the CoT Prompting (A3): We fur-
ther investigate the impact of CoT prompting and the text-
generation capabilities of various LMs on motion forecasting
performance. Table IX presents a detailed ablation analysis
of different LMs and the effects of CoT prompting. Results
reveal that the three LMs, which performed similarly well
in generating scene annotations on the CoT prompting-based
dataset, also demonstrated comparable prediction performance
with minimal differences. Even the smallest LM maintained
competitive performance, highlighting its efficiency within our
framework. However, when CoT prompting is removed from
the dataset generation process, significant declines in predic-
tion performance were observed across all LMs, regardless of
their parameter size. This underscores the pivotal role of CoT
prompting in improving model performance by guiding LLMs
to provide deep and nuanced scene descriptions by eliciting
a step-by-step reasoning process. The enriched scene annota-
tions generated by the CoT prompting-based LLMs, in turn,
serve as a solid foundation for embedding complex semantic
understanding into lightweight LMs, ultimately enhancing
the inference capabilities of CoT-Drive. These findings also
directly answer our second research question (Q3), offering
strong evidence that CoT prompting significantly enhances the
contextual understanding of LLMs in complex traffic scenarios
without requiring additional fine-tuning.

5) Ablation Studies on the Decoder: We explore the influ-
ence of different ensemble methods within the decoder, exam-
ining the influence of different architectures and the number
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TABLE IX: Ablation study results for different LMs that
were finetuned on datasets annotated with and without CoT
prompting, used in Language-Instructed Encoder.

Model # params (B) | CoT | WSADE (m) WSFDE (m)

Phi-1.5 1.50 X 1.2076 2.2139

Phi-1.5 1.50 v 1.0924 2.0191
TinyLlama 1.10 X 1.1923 2.2086
TinyLlama 1.10 v 1.0931 2.0203
Qwen-1.5 0.62 X 1.1874 2.1903
Qwen-1.5 0.62 v 1.0958 2.0260
GPT-Neo 0.13 X 1.2743 2.3201
GPT-Neo 0.13 v 1.1546 2.1284

of submodels on the results, as shown in Table X. The results
indicate that omitting all sub-models leads to a performance
drop of 8.3% in CoT-Drive’s predictions. Gradually increasing
the number of sub-models shows a marked improvement
in prediction accuracy, highlighting the effectiveness of our
proposed dual-strategy framework for handling AU and EU in
traffic scenarios. Interestingly, increasing the number of sub-
models leads to diminishing returns beyond a certain point.
Specifically, the six sub-model configurations combining MS-
LSTM, self-attention, and TCN provide optimal performance,
even outperforming the nine sub-model configurations. This
suggests that excessive model complexity can lead to overfit-
ting or redundancy, highlighting the importance of balancing
model complexity and efficiency to ensure robust motion
forecasting in diverse traffic environments.

TABLE X: Ablation study results for different numbers of
ensembled models within the Decoder. AVG: average RMSE
metric. Self-Attn: self-attention mechanism.

Architectures

MS-LSTM  Self-Atn. TCN  Sub-Models  AVG
X X X 0 1.67
v X X 1 1.61
v v X 2 1.57
v v v 3 1.54
v v v 3x2 1.53
v v v 3x3 1.56

E Qualitative Results

We present qualitative visualizations of CoT-Drive’s perfor-
mance in challenging highway and urban scenes, comparing
it with top baselines. These visualizations highlight how CoT-
Drive handles complex traffic scenes, supporting our responses
to research questions (Q1-Q3).

1) Qualitative Results in Highway Scenes: Figure 7 com-
pares CoT-Drive, its variant without the Language-Instructed
Encoder (Ours (-LI)), and the top baseline WSiP in complex
highway scenarios. The fine-tuned LM correctly identifies the
target vehicle’s intent to lane-change by analyzing the speed
difference with the vehicle ahead, predicting an overtaking
maneuver. This insight allows CoT-Drive to correctly predict
the lane change, whereas the baseline WSiP and Ours (-LI)
both mistakenly predict the vehicle will continue straight.
These results emphasize the critical role of the Language-
Instructed Encoder in capturing nuanced scene details and

o
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change opportunities for the target vehicle. 2. The target vehicle at (0,
0) traveling at a higher speed may consider overtaking but similar
speeds in lane 3 pose a collision risk. 3. The vehicle at (6.8, 1.2) may
further slow down to enable a safe lane change for the target vehicle.
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change for faster passage. 3. Lane 1 presents a collision risk due to
higher speeds, but lane 3 is clear, providing a safer overtaking
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Fig. 7: Qualitative results compare the CoT-Drive (Ours) on
the NGSIM dataset against its variant without the Language-
Instructed Encoder (Ours (-LI)) and WSip.

improving prediction accuracy. Additionally, in Figure 7 (b),
CoT prompting strengthens the model’s performance by gen-
erating detailed semantic annotations from both interaction
and risk perspectives. Figure 8 further illustrates CoT-Drive’s
superior performance in challenging scenes, showcasing the
improvements brought by the Language-Instructed Encoder
and responding to the Q1-Q2.

2) Qualitative Results in Complex Urban Scenes: Figure
9 shows results from complex urban scenes in nuScenes
dataset, comparing CoT-Drive with its variant without the
Language-Instructed Encoder ((Ours (-LI))), supported by
scene descriptions from the LM. For clarity, only one predicted
trajectory is shown for each model. Interestingly, without
explicit traffic light states or high-definition (HD) maps, CoT-
Drive—leveraging its fine-tuned LM—accurately infers the
target vehicle’s behavior to a changing signal. As illustrated
in Figure 9 (a), CoT-Drive predicts deceleration and stopping,
while CoT-Drive (-LI) mistakenly predicts a turn. This high-
lights the Language-Instructed Encoder’s role in enhancing
CoT-Drive’s human-like reasoning through CoT prompting
and context-aware scene descriptions. In Figure 9 (b), we show
a scenario with a left turn by the target vehicle. CoT-Drive, us-
ing detailed scene understanding from the Language-Instructed
Encoder, considers pedestrians crossing and vehicles moving
straight, predicting the vehicle will decelerate to avoid colli-
sions before turning. In contrast, CoT-Drive (-LI) incorrectly
predicts an immediate left turn, overlooking key surrounding
interactions. These visualizations clearly demonstrate the ad-
vantage of the step-by-step reasoning approach, resembling
human cognition. The Language-Instructed Encoder enables
CoT-Drive to excel in contextual understanding, accurately
predicting agent intentions, and making informed decisions.
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Fig. 8: Qualitative results of lane changing, merging, and acceleration scenarios on the NGSIM dataset, showcasing the
effectiveness of CoT-Drive versus its variant without the Language-Instructed Encoder (Ours (-LI)) and the baseline (WSiP).

1. Pedestrians are crossing from the northeast towards the target vehicle, posing a collision risk. They are
expected to continue on the sidewalk. 2. Most nearby vehicles are stationary, keeping the risk low. The target
vehicle at (0,0) should stop fully before turning right, allowing pedestrians to cross safely.

(b)

%
@ 1. Two surrounding vehicles to the north are blocking the target vehicle's path at the roundabout, posing a
high risk. They are likely to continue forward based on their historical trajectories. The target vehicle at (0, 0)
should stop and wait until these vehicles clear the way to ensure safety.
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Fig. 9: Qualitative results compare the CoT-Drive on the
nuScenes dataset (without using the HD map information)
against its variant without the Language-Instructed Encoder.

These results confirm the effectiveness of CoT-Drive, demon-
strating its real-world applicability for AD systems (Q1-Q3).

VI. DISCUSSIONS
A. Contribution Summary

In light of the insights gained from evaluations and analysis,
we summarize the primary contributions of this study:

1) This study introduces the Language-Instructed Encoder
that uses knowledge distillation to equip a lightweight lan-
guage model with the advanced scene understanding capa-
bilities of GPT-4 Turbo. This enhancement enables real-time
operation on in-vehicle edge devices, significantly improving
generalization abilities. To the best of our knowledge, this is
the first time a lightweight surrogate model of an LLM has
been trained and used for motion forecasting tasks.

2) This study presents two innovative scene description
datasets, Highway-Text and Urban-Text, derived from real-
world data and enriched using CoT prompting with GPT-4

Turbo. These datasets are pioneering in utilizing LLMs for
semantic understanding in motion forecasting, providing a
valuable resource for further research and development in the
fields of AD and LLM:s.

3) Through extensive testing across the NGSIM, HighD,
MoCAD, ApolloScape, and nuScenes datasets, CoT-Drive
demonstrates superior performance, surpassing most SOTA
baselines. This highlights its remarkable accuracy and effec-
tiveness in various traffic scenes, including highways, inter-
sections, and dense urban areas.

B. Discussion of Limitations and Future Researches

Despite the remarkable advancements demonstrated by
CoT-Drive in terms of prediction accuracy and efficiency,
several key challenges remain that require further exploration.

1) Robustness in Rare and Challenging Scenarios: We visu-
alize several “corner-case” scenarios to analyze the limitations
of CoT-Drive and to indicate future improvements. In Figure
10 (a), when a target agent starts from a complete stop, the
extended stationary state introduces significant uncertainty.
While CoT-Drive’s predicted trajectory is closer to the ground
truth than the baseline, it also struggles to infer the agent’s
intent, often predicting continued stationary behavior, leading
to inaccuracies in multi-modal trajectories. In Figures 10 (b)
and (c), congested lane-changing and U-turn situations require
precise identification of interactions between agents to predict
appropriate decisions. CoT-Drive, like other models, fails
to predict these rapid behavioral shifts. Motion Forecasting
models typically rely on extrapolating established trends, but
in the reverse parking scenario (Figure 10 (d)), the target
vehicle unexpectedly begins a backward maneuver, which de-
viates from the previously observed trajectory patterns. Here,
both the CoT-Drive and the baseline lack sufficient data to
predict this shift accurately, leading to errors in the prediction.
However, CoT-Drive’s trajectory, supported by the LMs’ scene
understanding, remains closer to the ground truth than other
models, emphasizing the value of using linguistic intermediate
representations for action reasoning with language priors.
These scenarios, although rare in the real world, are essen-
tial to ensure the safe deployment of AVs, highlighting the
need for future work to develop methods that use semantic
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Fig. 10: Failure cases of trajectories predicted by CoT-Drive and baseline in rare and challenging scenarios from the nuScenes
dataset, including launch (a), U-turn (b), lane changing (c), and reverse parking (d) scenes. For each scenario, we visualize
the environment around the target vehicle, along with the predicted trajectory (Others [52] and Ours) and the ground truth.

information to better capture multimodal driving behaviors and
accurately understand agent intentions in different scenes—not
just relying on numerical data.

2) Data Dependency of LLMs in Real-World Scenarios:
Another limitation of CoT-Drive is its reliance on high-
quality, well-annotated datasets, which are challenging and
costly to obtain, particularly for rare or complex scenarios
such as congested streets and adverse weather. Data collection
is further complicated by privacy concerns, biases, and the
need to represent a wide range of driving conditions. As a
result, CoT-Drive, similar to other LLM-based models, faces
challenges in adapting to unseen or rare scenarios. While
CoT prompting enhances scene understanding and reduces
hallucinations without the need for fine-tuning, its effective-
ness is tightly coupled with the quality of the training data.
Low-quality data can result in less accurate predictions. To
overcome these challenges, future research could focus on gen-
erating synthetic datasets through simulations, using domain
adaptation techniques to bridge the gap between simulated and
real-world data. Additionally, unsupervised or semi-supervised
learning approaches could reduce reliance on large annotated
datasets, while continual learning mechanisms could enable
CoT-Drive to dynamically adapt to evolving traffic patterns and
conditions. These improvements would mitigate the current
limitations and pave the way for more adaptable, reliable, and
robust motion forecasting models for AD.

C. Discussion of Unsupervised and Semi-supervised Ap-
proaches for Scene Description Generation

To address the data demands of LLM-based models, un-
supervised and semi-supervised learning approaches offer

promising alternatives [63]. Unsupervised learning can learn
from large volumes of unlabeled data, autonomously identi-
fying patterns, thus achieving broader generalization without
expensive manual labeling. Semi-supervised learning uses
labeled seed data to generate pseudo-labels for unlabeled data.
While these approaches reduce the need for annotated datasets,
they also pose significant challenges, especially given the
complexity and uncertainty of AD: 1) Data Quality: They
depend on inherent data patterns, which may be insufficient for
complex driving scenes, leading to unreliable predictions. In
contrast, CoT-Drive uses LLM-derived semantic annotations
to achieve richer contextual understanding. 2) Interpretabil-
ity: They often lack explicit scene representations, reducing
interpretability and hindering the validation of predictions.
CoT-Drive, enhanced by CoT prompting, provides step-by-step
reasoning and clear explanations, improving decision trans-
parency. While these approaches reduce data requirements,
they lack interpretability and semantic depth compared to CoT-
Drive. Future research could integrate LLM-based methods
with unsupervised or semi-supervised techniques to balance
scalability with advanced understanding and decision-making.

D. Discussion of Reinforcement Learning and Evolutionary
Learning Approaches for Motion Forecasting

This subsection compares LLM-based, RL-based, and EL-
based methods across three dimensions:

1) Data Requirements and Generalization: LLM-based
methods rely on curated datasets with high-quality and labor-
intensive annotations. In contrast, RL and EL methods [64]
leverage simulated environments with dynamic obstacles, min-
imizing data preparation and enabling broader exploration of



varied conditions. However, the “reality gap”—the discrepancy
between simulation and real-world conditions—Ilimits the gen-
eralizability of RL/EL, due to the difficulty in designing robust
reward functions for diverse situations.

2) Training Time and Computational Complexity: LLMs
involve extensive training time and computational resources
due to their large model size. RL and EL approaches, though
requiring smaller models and thereby reducing computational
costs, often depend on extensive trial-and-error processes
to converge, especially in complex reward structures. CoT-
enhanced CoT-Drive provides comprehensive scene under-
standing without additional fine-turn, and through knowledge
distillation, which makes LLM functionalities feasible for
lightweight, edge-level deployment in real-world driving.

3) Scene Understanding and Reasoning Capabilities:
LLMs excel at providing rich, context-aware reasoning, of-
fering a nuanced understanding of traffic scenes. By con-
trast, RL and EL models, primarily optimize policies, which
often lack the semantic depth and adaptability of LLMs.
RL and EL approaches typically focus on learned behaviors
without interpreting broader environmental cues or explaining
decision-making processes, limiting their efficacy in complex,
unpredictable situations. In comparison, LLM-based methods
adapt decisions based on agent intention, behaviors, and envi-
ronmental context, while also providing explicit reasoning for
these decisions. This makes LLM-based approaches particu-
larly suited for scenes that require context-specific reasoning.

E. Why LLMs Are a Viable Long-Term Alternative?

LLM-based approaches offer a promising long-term so-
lution for AD due to their advanced scene understanding
and context-aware reasoning, which surpasses the capabilities
of unsupervised, semi-supervised, and reinforcement learning
models. Despite the need for well-curated data, LLMs excel
in interpreting complex real-world environments, supported
by techniques like CoT prompting that emulate human-like
reasoning [65]. Unlike RL and EL models, which are com-
putationally efficient but often lack semantic depth, LLMs
integrate diverse pre-training and multi-source data, enabling
nuanced understanding. Advancements in knowledge distilla-
tion and synthetic data generation mitigate extensive training
requirements, facilitating edge-level deployment and reducing
dependency on large datasets. With improvements in onboard
computational power, deploying sophisticated LLMs in AVs
becomes more feasible, enhancing both real-time performance
and reliability [66]. Overall, LLMs strategically balance com-
putational efficiency with predictive capability AD.

VII. CONCLUSION

This study introduces CoT-Drive, a novel framework that
leverages GPT-4 Turbo with CoT prompt-based engineering to
improve scene understanding and prediction accuracy. By uti-
lizing specialized prompt engineering techniques, CoT-Drive
enhances the semantic analysis capabilities of LLMs. Addi-
tionally, an innovative knowledge distillation strategy allows
for the transfer of LLM comprehension to lightweight edge
models, enabling them to achieve scene interpretation abilities
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similar to full LLMs. This approach effectively addresses the
computational and latency issues associated with traditional
methods, facilitating safe and efficient motion forecasting.
To our knowledge, this is the first time a lightweight sur-
rogate model of an LLM has been trained and utilized for
motion forecasting tasks. Furthermore, we have developed
two new scene description datasets, Highway-Text and Urban-
Text, specifically designed to fine-tune lightweight LMs for
generating context-specific semantic annotations, thereby opti-
mizing inference costs for real-time operation on edge devices.
Comprehensive evaluations on five real-world driving datasets
demonstrate that CoT-Drive surpasses state-of-the-art models
by significant margins. In summary, CoT-Drive establishes a
new benchmark in motion forecasting and provides a practical
solution for embedding LLMs in edge AD devices.
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